45 research outputs found

    Extracorporeal cytokine adsorption reduces systemic cytokine storm and improves graft function in lung transplantation

    Full text link
    OBJECTIVES Ischemia-reperfusion injury often coincides with a cytokine storm, which can result in primary graft dysfunction following lung transplantation. Our previous research has demonstrated allograft improvement by cytokine adsorption during ex vivo lung perfusion. The aim of this study was to investigate the effect of in vivo extracorporeal cytokine adsorption in a large animal model. MATERIALS AND METHODS Pig left lung transplantation was performed following 24 hours of cold ischemic storage. Observation period after transplantation was 24 hours. In the treatment group (n = 6), extracorporeal CytoSorb adsorption was started 30 minutes before reperfusion and continued for 6 hours. A control group (n = 3) did not receive adsorber treatment. RESULTS During adsorption, we consistently noticed a significant decrease in plasma proinflammatory interleukin (IL)-2, trends of less proinflammatory, tumor necrosis factor- α, IL-1α, and granulocyte-macrophage colony-stimulating factor as well as significantly reduced systemic neutrophils. In addition, a significantly lower peak airway pressure was detected during the 6 hours of adsorption. After 24 hours of observation, when evaluating the left lung allograft independently, we observed significantly improved CO2 removal, partial pressure of oxygen/inspired oxygen fraction ratio, and less acidosis in the treatment group. At autopsy, bronchoalveolar lavage results exhibited significantly lower recruitment of cells and less pro-inflammatory IL-1α, IL-1β, IL-6, and IL-8 in the treatment group. Histologically, the treatment group had a strong trend, indicating less neutrophil invasion into the alveolar space. CONCLUSIONS Based on our findings, cytokine adsorption during and after reperfusion is a viable approach to reducing posttransplant inflammation following lung transplantation. CytoSorb may increase the acceptance of extended criteria donor lungs, which are more susceptible to ischemia-reperfusion injury

    The sheep as a pre-clinical model for testing intra-aortic percutaneous mechanical circulatory support devices

    Full text link
    The save deployment of intra-aortic percutaneous mechanical circulatory support devices is highly dependent on the inner aortic diameter. Finding the anatomically and ethically most suitable animal model for performance testing of new pMCS devices remains challenging. For this study, an ovine model using adult ewes of a large framed breed (Swiss White Alpine Sheep) was developed to test safety, reliability, and biocompatibility of catheter-mounted mechanical support devices placed in the descending thoracic aorta. Following the drawback of fluctuating aortic diameter and device malfunction in the first four animals, the model was improved by stenting the following animals with an aortic stent. Stenting the animals with an intra-aortic over the balloon stent was found to standardize the experimental set-up and to avoid early termination of the experiment due to non-device related issues. Keywords: 3R; Mechanical circulatory support; animal model; preclinical study; sheep; thoracic aort

    Continuous Monitoring of Blood Pressure and Vascular Hemodynamic Properties With Miniature Extravascular Hall-Based Magnetic Sensor

    Full text link
    Continuous measurement of vascular and hemodynamic parameters could improve monitoring of disease progression and enable timely clinical decision making and therapy surveillance in patients suffering from cardiovascular diseases. However, no reliable extravascular implantable sensor technology is currently available. Here, we report the design, characterization, and validation of an extravascular, magnetic flux sensing device capable of capturing the waveforms of the arterial wall diameter, arterial circumferential strain, and arterial pressure without restricting the arterial wall. The implantable sensing device, comprising a magnet and a magnetic flux sensing assembly, both encapsulated in biocompatible structures, has shown to be robust, with temperature and cyclic-loading stability. Continuous and accurate monitoring of arterial blood pressure and vascular properties was demonstrated with the proposed sensor in vitro with a silicone artery model and validated in vivo in a porcine model mimicking physiologic and pathologic hemodynamic conditions. The captured waveforms were further used to deduce the respiration frequency, the duration of the cardiac systolic phase, and the pulse wave velocity. The findings of this study not only suggest that the proposed sensing technology is a promising platform for accurate monitoring of arterial blood pressure and vascular properties, but also highlight the necessary changes in the technology and the implantation procedure to allow the translation of the sensing device in the clinical setting

    The Sheep as a Comprehensive Animal Model to Investigate Interdependent Physiological Pressure Propagation and Multiparameter Influence on Cerebrospinal Fluid Dynamics

    Full text link
    The present study aims to develop a suitable animal model for evaluating the physiological interactions between cerebrospinal fluid (CSF) dynamics, hemodynamics, and abdominal compartment pressures. We seek to contribute to the enhanced recognition of the pathophysiology of CSF-dependent neurological disorders like hydrocephalus and the improvement of available treatment options. To date, no comprehensive animal model of CSF dynamics exists, and establishing an accurate model will advance our understanding of complex CSF physiology. Persisting knowledge gaps surrounding the communication and pressure propagation between the cerebrospinal space and adjacent anatomical compartments exacerbate the development of novel therapies for neurological diseases. Hence, the need for further investigation of the interactions of vascular, craniospinal, and abdominal pressures remains beyond dispute. Moreover, the results of this animal study support the optimization of in vitro test benches for medical device development, e.g., ventriculoperitoneal shunts. Six female white alpine sheep were surgically equipped with pressure sensors to investigate the physiological values of intracranial, intrathecal, arterial, central venous, jugular venous, vesical pressure, and four differently located abdominal pressures. These values were measured simultaneously during the acute animal trial with sheep under general anesthesia. Both carotid and femoral arterial blood pressure indicate a reliable and comparable representation of the systematic blood pressure. However, the jugular venous pressure and the central venous pressure in sheep in dorsal recumbency do not correlate well under general anesthesia. Furthermore, there is a trend for possible comparability of lateral intraventricular and lumbar intrathecal pressure. Nevertheless, animal body position during measurements must be considered since different body constitutions can alter the horizontal line between the cerebral ventricles and the lumbar subarachnoid space. While intra-abdominal pressure measurement in the four different abdominal quadrants yielded greater inter-individual variability, intra-vesical pressure measurements in our setting delivered comparable values for all sheep. We established a novel and comprehensive ovine animal model to investigate interdependent physiologic pressure propagation and multiparameter influences on CSF dynamics. The results of this study will contribute to further in vitro bench testing, the derivation of novel quantitative models, and the development of a pathologic ovine hydrocephalus model

    Influence of head-over-body and body-over-head posture on craniospinal, vascular, and abdominal pressures in an acute ovine in-vivo model

    Full text link
    INTRODUCTION Optimal shunt-based hydrocephalus treatments are heavily influenced by dynamic pressure behaviors between proximal and distal ends of shunt catheters. Posture-dependent craniospinal, arterial, venous, and abdominal dynamics thereby play an essential role. METHODS An in-vivo ovine trial (n = 6) was conducted to evaluate communication between craniospinal, arterial, venous, and abdominal dynamics. Tilt-testing was performed between -13° and + 13° at 10-min intervals starting and ending at 0° prone position. Mean pressure, pulse pressure, and Pearson correlation (r) to the respective angle were calculated. Correlations are defined as strong: |r|≥ 0.7, mild: 0.3 <|r|< 0.7, and weak: |r|≤ 0.3. Transfer functions (TFs) between the arterial and adjacent compartments were derived. RESULTS Strong correlations were observed between posture and: mean carotid/femoral arterial (r = - 0.97, r = - 0.87), intracranial, intrathecal (r = - 0.98, r = 0.94), jugular (r = - 0.95), abdominal cranial, dorsal, caudal, and intravesical pressure (r = - 0.83, r = 0.84, r = - 0.73, r = 0.99) while mildly positive correlation exists between tilt and central venous pressure (r = 0.65). Only dorsal abdominal pulse pressure yielded a significant correlation to tilt (r = 0.21). TFs followed general lowpass behaviors with resonant peaks at 4.2 ± 0.4 and 11.5 ± 1.5 Hz followed by a mean roll-off of - 15.9 ± 6.0 dB/decade. CONCLUSIONS Tilt-tests with multi-compartmental recordings help elucidate craniospinal, arterial, venous, and abdominal dynamics, which is essential to optimize shunt-based therapy. Results motivate hydrostatic influences on mean pressure, with all pressures correlating to posture, with little influence on pulse pressure. TF results quantify the craniospinal, arterial, venous, and abdominal compartments as compliant systems and help pave the road for better quantitative models of the interaction between the craniospinal and adjacent spaces

    Venous dynamics in anesthetized sheep govern postural-induced changes in cerebrospinal fluid pressure comparable to those in humans

    Full text link
    Sheep are popular large animals in which to model human disorders and to study physiological processes such as cerebrospinal fluid dynamics. However, little is known about vascular compensatory mechanisms affecting cerebrospinal fluid pressures during acute postural changes in sheep. Six female white Alpine sheep were anesthetized to investigate the interactions of the vascular and cerebrospinal fluid system by acquiring measurements of intracranial pressure and central and jugular venous pressure during passive postural changes induced by a tilt table. The cross-sectional area of the common jugular vein and venous blood flow velocity was recorded. Anesthetized sheep showed bi-phasic effects of postural changes on intracranial pressure during tilting. A marked collapse of the jugular vein was observed during head-over-body tilting; this is in accordance with findings in humans. Active regulatory effects of the arterial system on maintaining cerebral perfusion pressure were observed independent of tilting direction. Conclusion: Anesthetized sheep show venous dynamics in response to posture-induced changes in intracranial pressure that are comparable with those in humans

    Cellular activation status in femoral shaft fracture hematoma following different reaming techniques - A large animal model

    Full text link
    The local inflammatory impact of different reaming protocols in intramedullary nailing has been sparsely investigated. We examined the effect of different reaming protocols on fracture hematoma (FH) immunological characteristics in pigs. To do so, a standardized midshaft femur fracture was induced in adult male pigs. Fractures were treated with conventional reamed femoral nailing (group RFN, n = 6); unreamed femoral nailing (group UFN, n = 6); reaming with a Reamer Irrigator Aspirator device (group RIA, n = 12). Animals were observed for 6 h and FH was collected. FH-cell apoptosis and neutrophil receptor expression (Mac-1/CD11b and FcγRIII/CD16) were studied by flow cytometry and local temperature changes were analyzed. The study demonstrates that apoptosis-rates of FH-immune cells were significantly lower in group RIA (3.50 ± 0.53%) when compared with non-RIA groups: (group UFN 12.50 ± 5.22%, p = 0.028 UFN vs. RIA), (group RFN 13.30 ± 3.18%, p < 0.001, RFN vs. RIA). Further, RIA-FH showed lower neutrophil CD11b/CD16 expression when compared with RFN (mean difference of 43.0% median fluorescence intensity (MFI), p = 0.02; and mean difference of 35.3% MFI, p = 0.04, respectively). Finally, RIA induced a transient local hypothermia and hypothermia negatively correlated with both FH-immune cell apoptosis and neutrophil activation. In conclusion, immunologic changes observed in FH appear to be modified by certain reaming techniques. Irrigation during reaming was associated with transient local hypothermia, decreased apoptosis, and reduced neutrophil activation. Further study is warranted to examine whether the rinsing effect of RIA, specific tissue removal by reaming, or thermal effects predominantly determine local inflammatory changes during reaming

    Occult hypoperfusion and changes of systemic lipid levels after severe trauma: an analysis in a standardized porcine polytrauma model

    Full text link
    BACKGROUND: Occult hypoperfusion describes the absence of sufficient microcirculation despite normal vital signs. It is known to be associated with prolonged elevation of serum lactate and later complications in severely injured patients. We hypothesized that changes in circulating lipids are related to responsiveness to resuscitation. The purpose of this study is investigating the relation between responsiveness to resuscitation and lipidomic course after poly trauma. METHODS: Twenty-five male pigs were exposed a combined injury of blunt chest trauma, liver laceration, controlled haemorrhagic shock, and femoral shaft fracture. After 1 h, animals received resuscitation and fracture stabilization. Venous blood was taken regularly and 233 specific lipids were analysed. Animals were divided into two groups based on serum lactate level at the end point as an indicator of responsiveness to resuscitation (<2 mmol/L: responder group (R group), ≧2 mmol/L: occult hypoperfusion group (OH group)). RESULTS: Eighteen animals met criteria for the R group, four animals for the OH group, and three animals died. Acylcarnitines showed a significant increase at 1 h compared to baseline in both groups. Six lipid subgroups showed a significant increase only in R group at 2 h. There was no significant change at other time points. CONCLUSIONS: Six lipid groups increased significantly only in the R group at 2 h, which may support the idea that they could serve as potential biomarkers to help us to detect the presence of occult hypoperfusion and insufficient resuscitation. We feel that further study is required to confirm the role and mechanism of lipid changes after trauma

    Septaly Oriented Mild Aortic Regurgitant Jets Negatively Influence Left Ventricular Blood Flow—Insights From 4D Flow MRI Animal Study

    Full text link
    Objectives: Paravalvular leakage (PVL) and eccentric aortic regurgitation remain a major clinical concern in patients receiving transcatheter aortic valve replacement (TAVR), and regurgitant volume remains the main readout parameter in clinical assessment. In this work we investigate the effect of jet origin and trajectory of mild aortic regurgitation on left ventricular hemodynamics in a porcine model. Methods: A pig model of mild aortic regurgitation/PVL was established by transcatheter piercing and dilating the non-coronary (NCC) or right coronary cusp (RCC) of the aortic valve close to the valve annulus. The interaction between regurgitant blood and LV hemodynamics was assessed by 4D flow cardiovascular MRI. Results: Six RCC, six NCC, and two control animals were included in the study and with one dropout in the NCC group, the success rate of model creation was 93%. Regurgitant jets originating from NCC were directed along the ventricular side of the anterior mitral leaflet and integrated well into the diastolic vortex forming in the left ventricular outflow tract. However, jets from the RCC were orientated along the septum colliding with flow within the vortex, and progressing down to the apex. As a consequence, the presence as well as the area of the vortex was reduced at the site of impact compared to the NCC group. Impairment of vortex formation was localized to the area of impact and not the entire vortex ring. Blood from the NCC jet was largely ejected during the following systole, whereas ejection of large portion of RCC blood was protracted. Conclusions: Even for mild regurgitation, origin and trajectory of the regurgitant jet does cause a different effect on LV hemodynamics. Septaly oriented jets originating from RCC collide with the diastolic vortex, reduce its size, and reach the apical region of the left ventricle where blood resides extendedly. Hence, RCC jets display hemodynamic features which may have a potential negative impact on the long-term burden to the heart

    A Soft Robotic Actuator System for in vivo Modeling of Normal Pressure Hydrocephalus

    Full text link
    OBJECTIVE: The intracranial pressure (ICP) affects the dynamics of cerebrospinal fluid (CSF) and its waveform contains information that is of clinical importance in medical conditions such as hydrocephalus. Active manipulation of the ICP waveform could enable the investigation of pathophysiological processes altering CSF dynamics and driving hydrocephalus. METHODS: A soft robotic actuator system for intracranial pulse pressure amplification was developed to model normal pressure hydrocephalus in vivo. Different end actuators were designed for intraventricular implantation and manufactured by applying cyclic tensile loading on soft rubber tubing. Their mechanical properties were investigated, and the type that achieved the greatest pulse pressure amplification in an in vitro simulator of CSF dynamics was selected for application in vivo. A hydraulic actuation device based on a linear voice coil motor was developed to enable automated and fast operation of the end actuators. The combined system was validated in an acute ovine pilot in vivo study. RESULTS: In vitro results show that variations in the used materials and manufacturing settings altered the end actuator's dynamic properties, such as the pressure-volume characteristics. In the in vivo model, a cardiac-gated actuation volume of 0.125 mL at a heart rate of 62 bpm caused an increase of 205% in mean peak-to-peak amplitude but only an increase of 1.3% in mean ICP. CONCLUSION: The introduced soft robotic actuator system is capable of ICP waveform manipulation. SIGNIFICANCE: Continuous amplification of the intracranial pulse pressure could enable in vivo modeling of normal pressure hydrocephalus and shunt system testing under pathophysiological conditions to improve therapy for hydrocephalus
    corecore